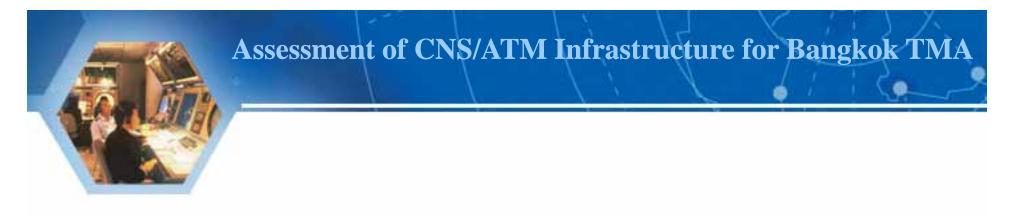
Enhancing Airspace Safety and Capacity using PBN Bangkok TMA Case Study

Present by AEROTHAI

PBN Seminar and The Eighth Meeting of The Asia/Pacific PBN Task Force 9-13 May 2011, New Delhi, India

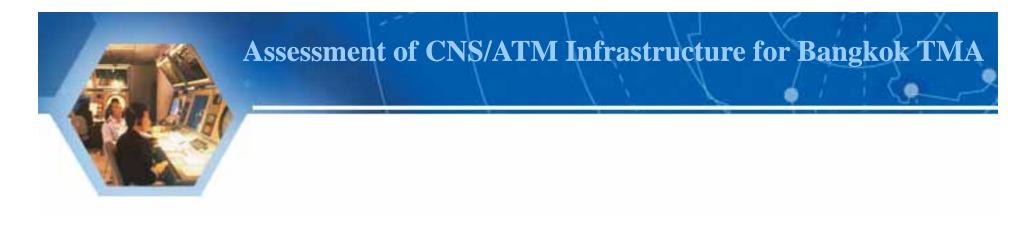
- Analysis of Current Baseline Scenario
 - Current SIDs/STARs and their Limitations
- Agreement on Project Objectives and Scope
 - Agreed Performance Criteria
- Options to be evaluated
 - Option 1: Open-STAR
 - Option 2: Point Merge
- Performance Evaluation
 - Capacity
 - Delay
 - Workload
 - Environment
- Recommendations by ICAO and IATA


Topics

Analysis of Baseline Scenario

3

Communication

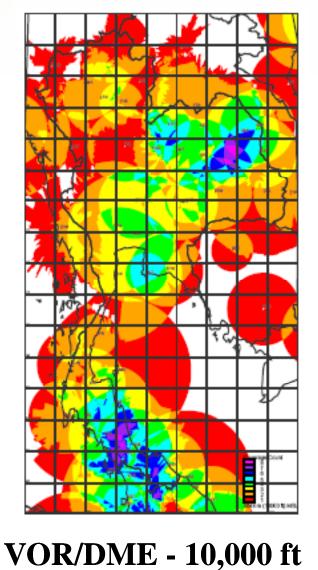

• 100% VHF Direct-Voice Communication

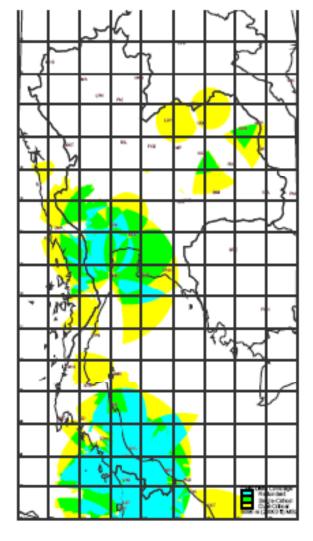
Surveillance

- 100% Radar-coverage
 - PSR, SSR at both Suvarnabhumi and Don Mueang
 - Surface Movement RADAR and Multilateration at Suvarnabhumi
 - ADS-B implementation is on-going

ATM System

- Eurocat X
- Maestro available




Navigation

- VOR/DME and 4xILS/DME available for Suvarnahumi
- VOR/DME and 3xILS/DME available
- 100% VOR/DME and DME/DME Coverage
- GNSS performance and interference are well-tested and being monitored in real-time.

Assessment of CNS/ATM Infrastructure for Bangkok TMA

DME/DME - 10,000 ft

Assessment of Fleet Capability at VTBS

Aircraft Type			Aircraft Type		
(Departure)		%	(Arrival)		%
A320	WTC M	16.42	A320	WTC M	16.14
B744	WTC H	9.28	B744	WTC H	9.27
A333	WTC H	9.36	A333	WTC H	9.20
A306	WTC H	9.31	A306	WTC H	9.28
B772	WTC H	7.37	B772	WTC H	7.39
A319	WTC M	5.95	A319	WTC M	5.84
B733	WTC M	4.74	B733	WTC M	4.74
AT72	WTC M	5.30	AT72	WTC M	5.35
B734	WTC M	4.73	B734	WTC M	5.03
B773	WTC H	4.09	B773	WTC H	4.08
Others		23.45	Others		23.69

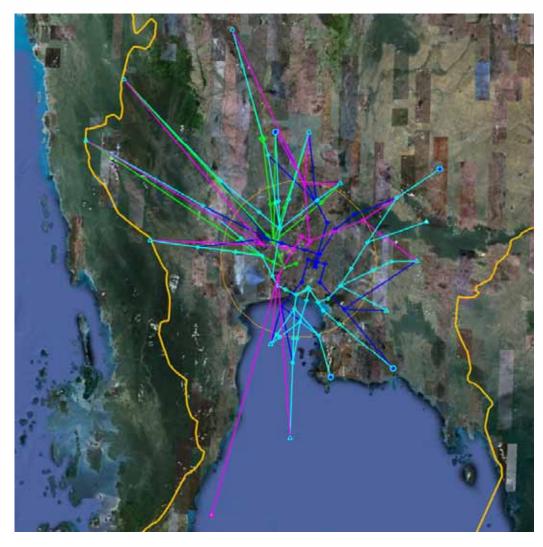
STAR and SID

- Almost all aircraft capable of RNAV-1
- Operate pre-PBN RNAV(GNSS) SID/STAR since the beginning of airport operation in 2008.

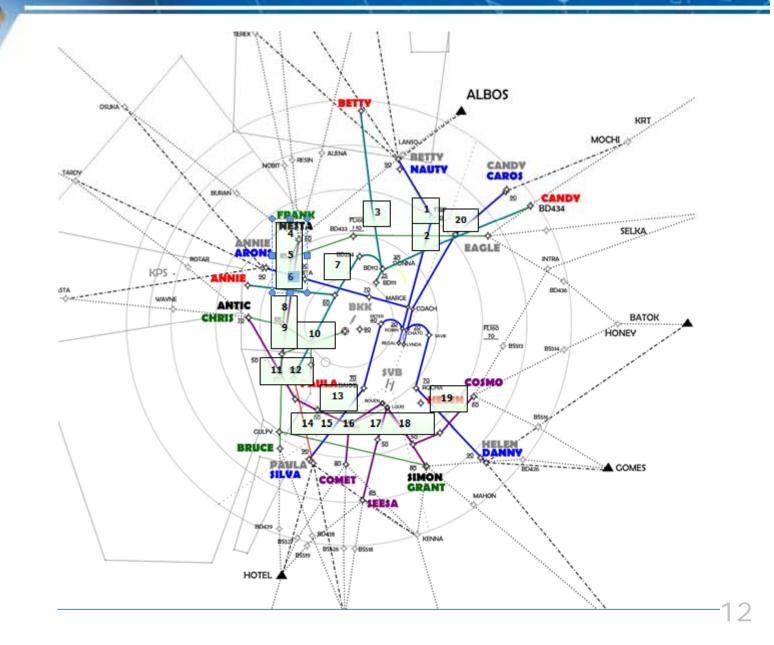
Approach

- About 70% of aircraft capable of RNP APCH with or w/o Baro-VNAV
- RNP APCH w/ Baro-VNAV can be designed to provide back-up to ILS
- Similar case for VTBD

- Tropical Rain
- Some fog
- Prominent South \rightarrow North wind from the Sea (9 months/year)
- North→ South Wind in "Winter"
- Every now and then, strange wind contradicting wind pattern at VTBS and VTBD


Airports

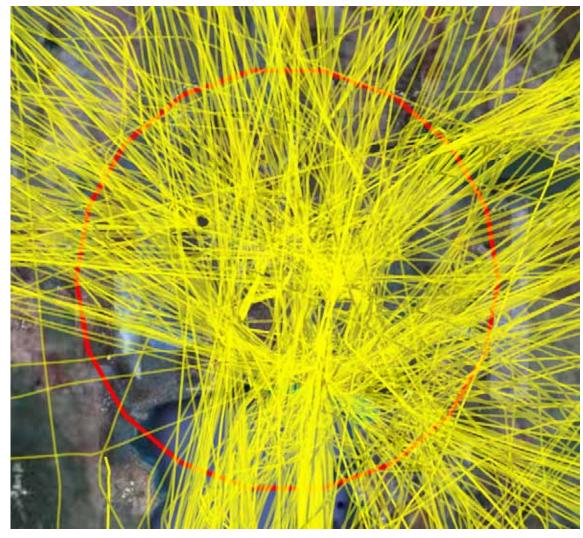
- 2 airports within close vicinity
 - VTBS Suvarnabhumi 2 runways (01/19)
 - VTBD Don Mueang 2 runways (03/21)
- Mostly flat terrain



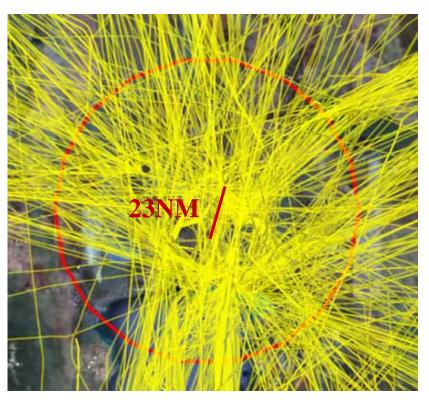
Current SIDs/STARs and their Limitations

Current SID/STAR VTBS19 and VTBD21

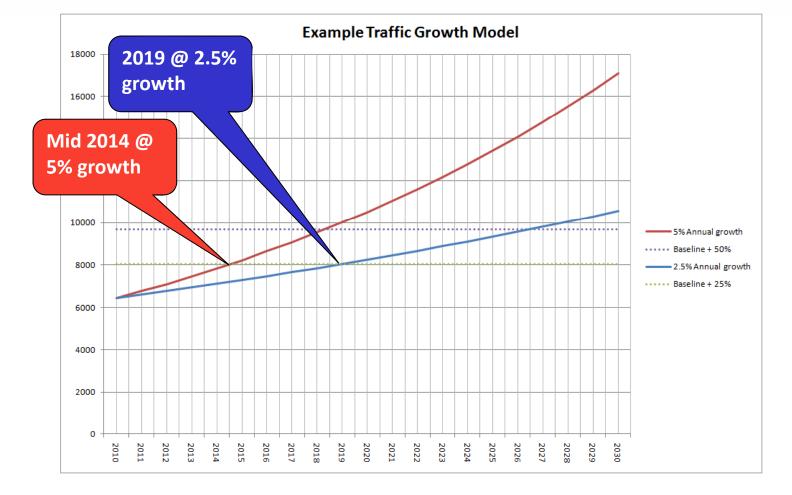
Current SIDs/STARs and their Limitations


Current SIDs/STARs and their Limitations

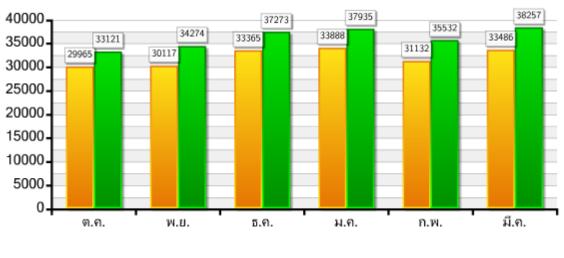
- 20 Crossing Points potential conflicts
- Requires a lot of radar vectoring and levelling off
 - both during departure and arrival
 - increase workload for both ATCs and pilots
 - High fuel consumption and CO2 emission due to low-altitude radar vectoring and restricted climb during departures
- Prone to TCAS alerts and aircraft incidents


Current SIDs/STARs and their Limitations

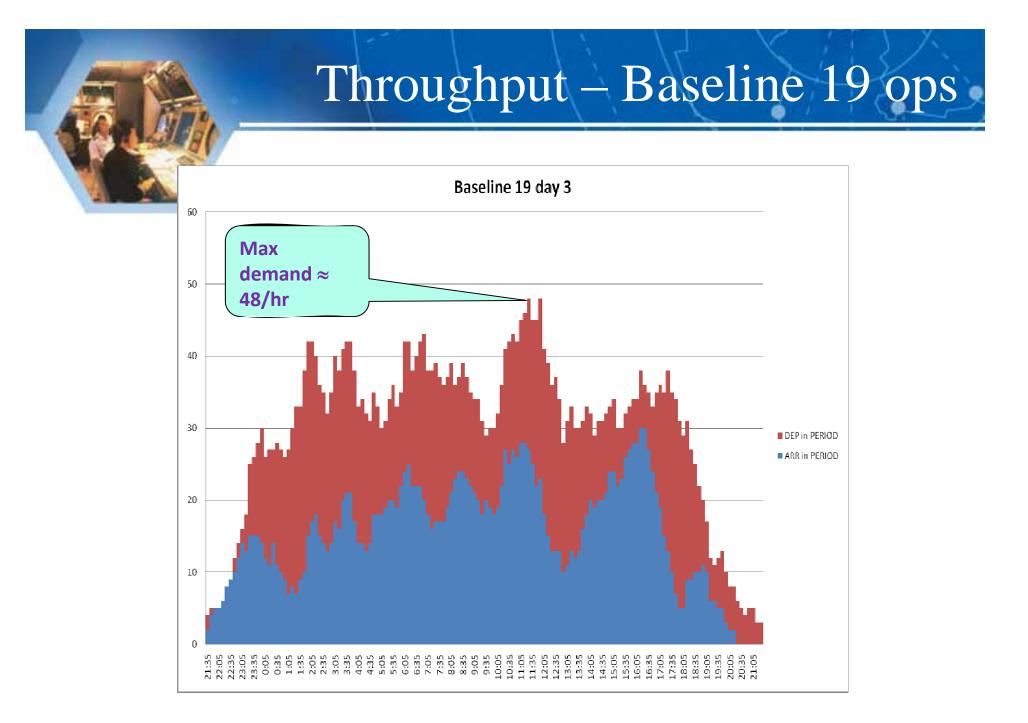
One day of actual RADAR track



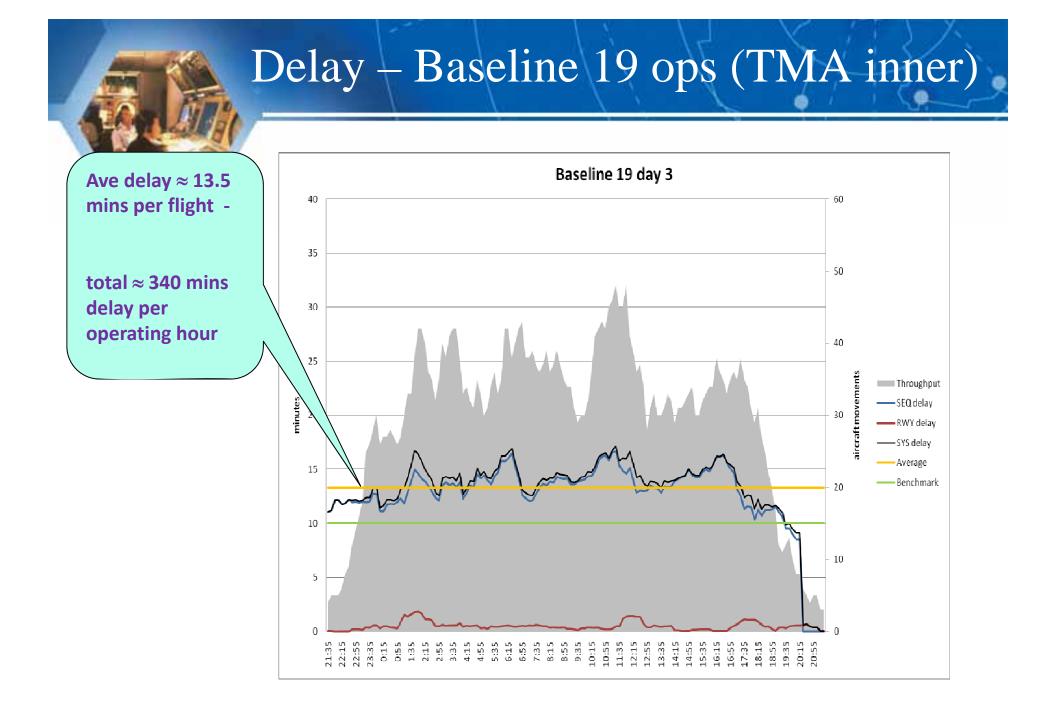
Current SIDs/STARs and their Limitations


- RADAR vectoring for extended downwind now extended beyond 20 NM
 - Beyond the service area of ILS as depicted in ICAO Annex 10
 - Some false-ILS captures have been reported
 - Safety hazards, especially for future parallel approach operations

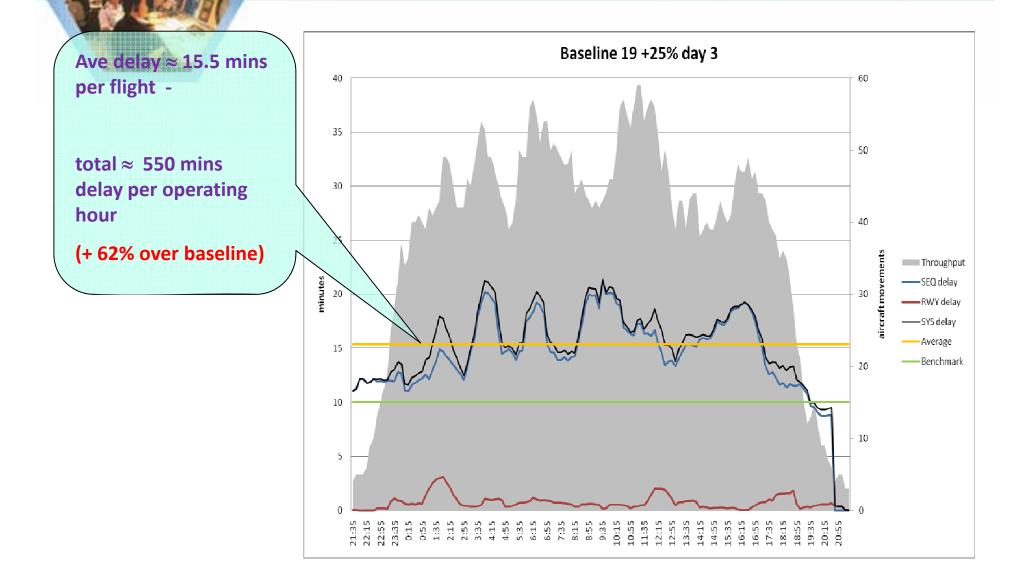
Expected Growth and Limitations: Why 125% and When?

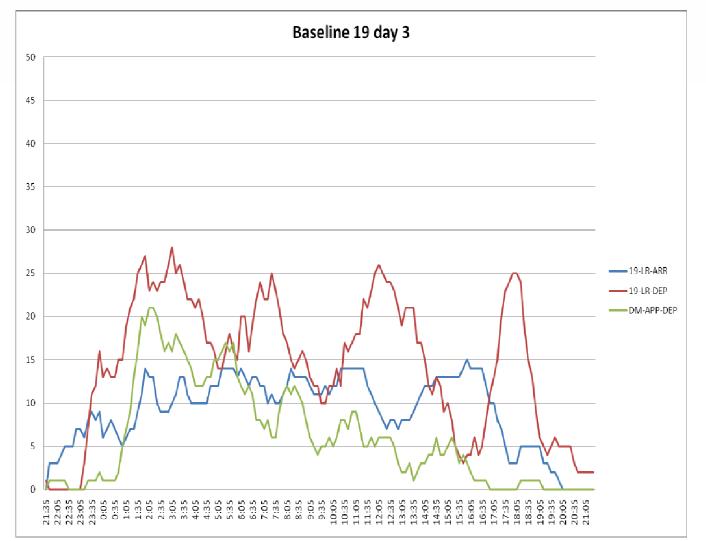

Actual Growth: 10% ++

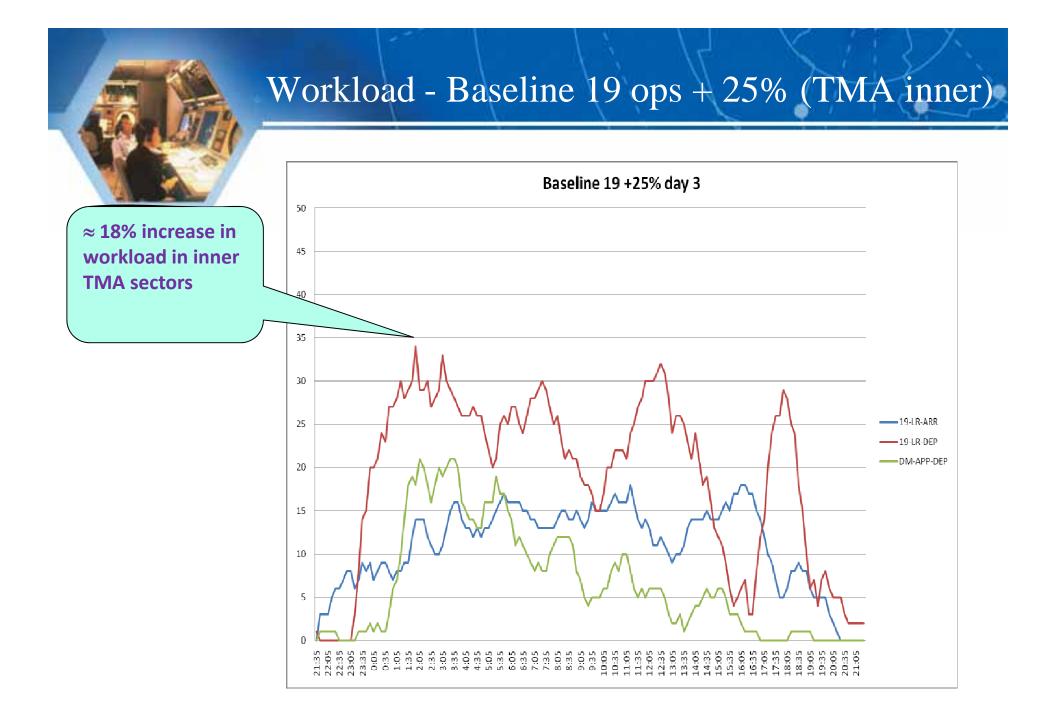
ปริมาณเที่ยวบินพาณิชย์ประจำปังบประมาณ 2554



^{📃 2553 📃 2554}


เดือน	2553	2554	ผลการเปลี่ยนแปลง	% เปลี่ยนแปลง		
ต.ค.	29,965	33,121	3,156	10.53 %		
พ.ย.	30,117	34,274	4,157	13.80 %		
ธ.ค.	33,365	37,273	3,908	11.71 %		
ม.ค.	33,888	37,935	4,047	11.94 %		
ก.พ.	31,132	35,532	4,400	14.13 %		
มี.ค.	33,486	38,257	4,771	14.25 %		
ຣາມ 191,953 216,392						




Delay – Baseline 19 ops + 25% (TMA inner)

Workload - Baseline 19 ops (TMA inner)

Agreements on Project Objectives, Scope and Performance Matrix

24

The National Working Group at its 21st Meeting endorsed the following objective statement.

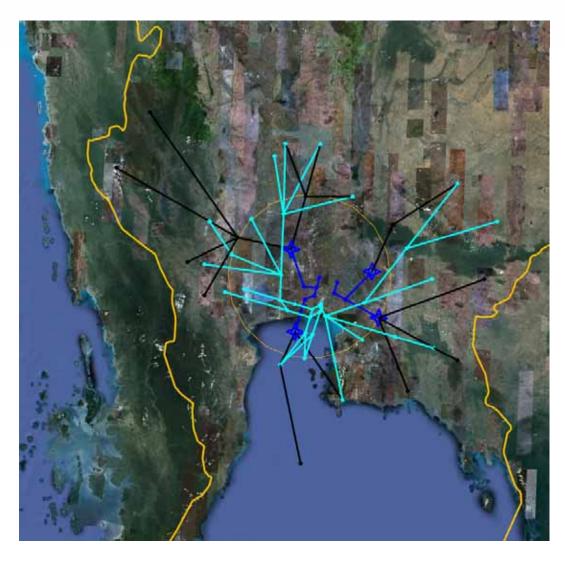
"Enable the maximum use of potential runway capacity

Subject to

- Maintain system safety
- Minimise system delays
- Optimise controller workload
- Minimise environmental impact"

- Revision of SID and STAR for Suvarnabhumi and Don Mueang
- Introduction of RNP APCH with Baro-VNAV
- Revise Airspace Structure and Existing Conventional IFPs as Necessary

- Two alternative options are being evaluated
 - Option 1: Open STAR to downwind
 - Option 2: Point Merge

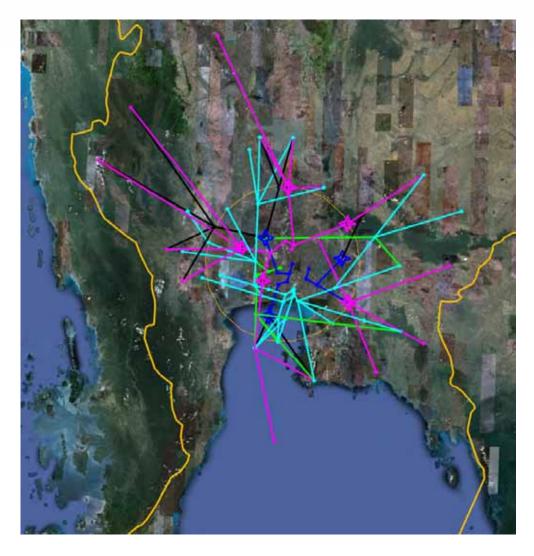

Option 1: Open-STAR

28

On-going Works on Revising SID and STAR: Option 1 – Open STAR

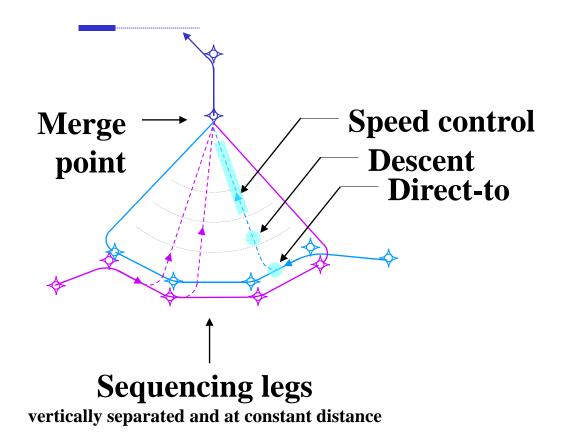
Proposed Open-STAR with SID VTBS RWY 19

On-going Works on Revising SID and STAR: Option 1 – Open STAR


Proposed SID/STAR VTBD RWY 21

On-going Works on Revising SID and STAR: Option 1 – Open STAR

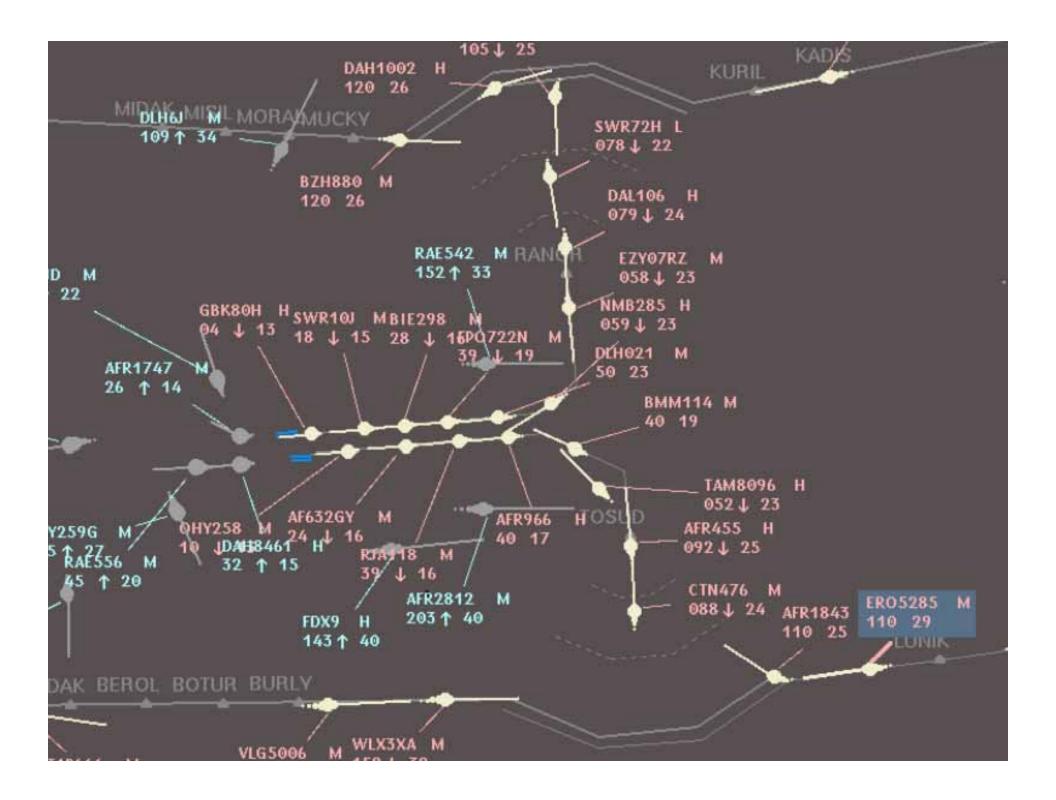
Overall Open-STAR Proposal



Option 2: Point-Merge

On-going Works on Revising SID and STAR: Option 2 – Point Merge

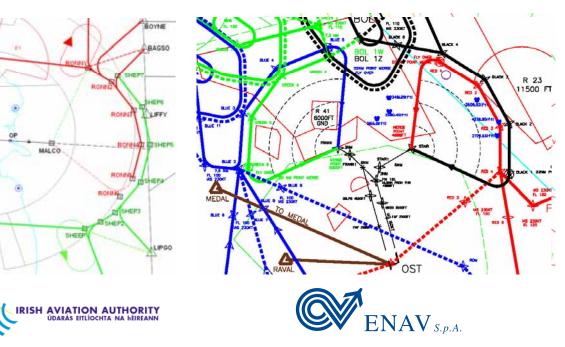
Eurocontrol Point Merge Concept



Point-Merge Concept

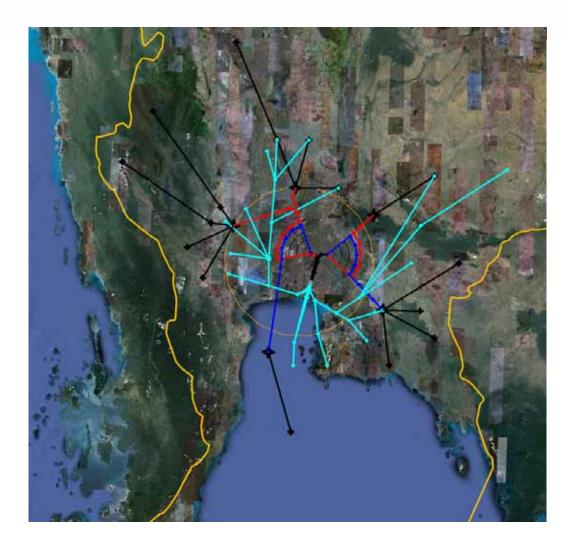
- Developed by Eurocontrol
- Endorsed by ICAO and documented in ICAO Doc. 9931: Continuous Descent Operations (CDO) Manual

Doc 9931 AN/476 Continuous Descent Operations (CDO) Manual Notice to Users This document is an unedited advance version of an ICAO publication as approved, in principle, by the Secretary General, which is rendered available to the public for convenience. The final edited version may still undergo alterations in the process of editing. Consequently, ICAO accepts no responsibility or liability of any kind should the final text of this publication be at variance from that appearing here. Advance edition (unedited)


On-going Works on Revising SID and STAR:

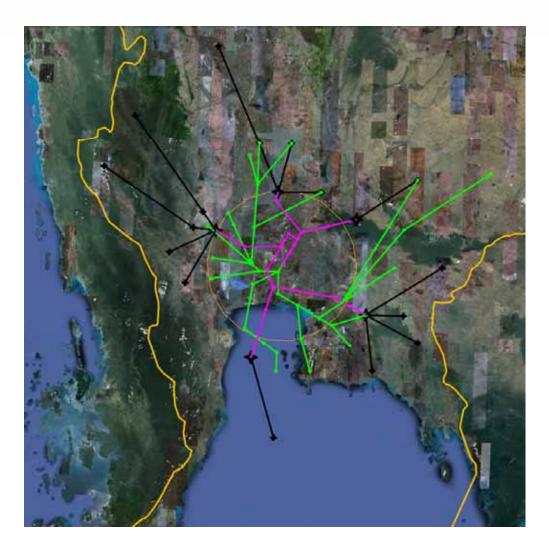
Option 2 – Point Merge

• • • • • • • • • • AVINOR

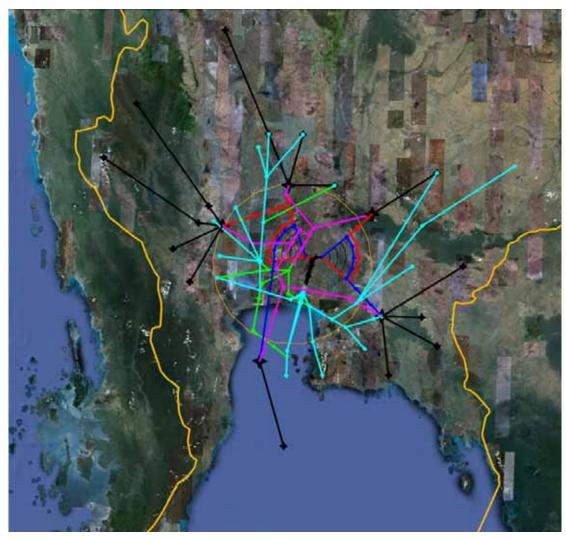

SYMMO

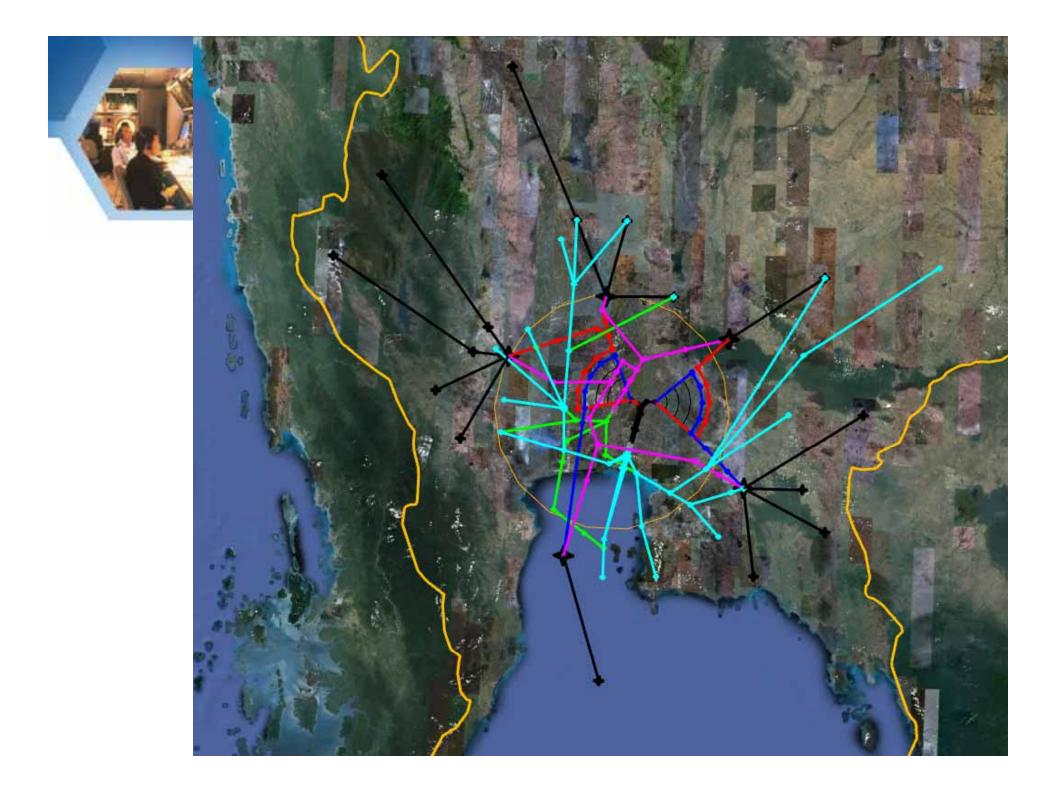
- Oslo, Dublin, Rome
- Others interested (Geneva, Brussels, Munich, ...)

On-going Works on Revising SID and STAR: Option 2 – Point Merge


Proposed Point Merge-STAR with SID VTBS RWY 19

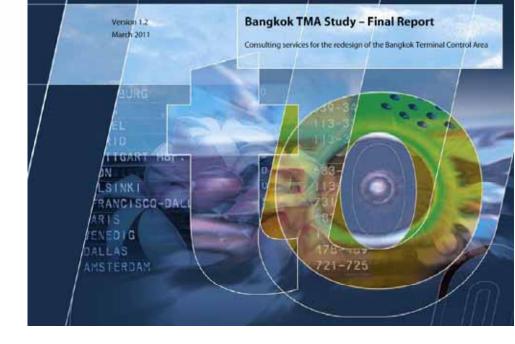
On-going Works on Revising SID and STAR: Option 2 – Point Merge


Proposed SID/STAR VTBD RWY 21



On-going Works on Revising SID and STAR: Option 2 – Point Merge

Overall Point Merge-STAR Proposal



Performance Evaluation

42

Evaluation Methodology

Performance Comparison:

Open-STAR vs. Point Merge

- Use fast-time simulation tool as utilized by Eurocontrol
- Conducted by independent experts (To70).
 - Acceptance Committee from ATC Suvarnabhumi, ATC Don Mueang and Procedure Design
- Expert recommendations received by ICAO/IATA PBN Go-Team.

The National Working Group at its 21st Meeting endorsed the following objective statement.

"Enable the maximum use of potential runway capacity

Subject to

- Maintain system safety
- Minimise system delays
- Optimise controller workload
- Minimise environmental impact"

Traffic Demand Schedule

Traffic demand levels based on percentage over current traffic

Level	Max Arrival Demand	Max Departure Demand	Max Combined Demand
125%	40	40	62
150%	47	46	75
175%	54	52	84
200%	63	66	105

Delay Performance

Open-STAR

	TBS Enhanced (Mixed)			
	125%	150%	175%	200%
Average Arrivals (mins)	3.64	11.62	50.78	63.08
Average Departure (mins)	0.75	2.37	3.50	14.13
Average Combined (mins)	4.39	13.98	54.28	77.21
Max Arrival (mins)	11.10	40.60	128.09	150.13
Max Departure (mins)	7.66	13.14	152.84	172.79
Max Combined (mins)	12.82	42.36	152.84	172.79
Table 23 - Summary of Delays for VTBS Canacity Analytis				

Point-merge

	Point Merge Enhanced (Mixed)		Point Merge Enhanced (INI		ND)			
	125%	150%	175%	200%	125%	150%	175%	200%
Average Arrivals (mins)	1.64	3.89	11.66	35.32	1.09	2.27	3.85	11.58
Average Departure (mins)	0.88	1.50	3.81	18.50	0.64	1.44	2.34	5.77
Average Combined (mins)	2.52	5.39	15.47	53.83	1.73	3.72	6.20	17.35
Max Arrival (mins)	4.87	12.75	43.72	80.07	3.38	8.01	13.69	39.67
Max Departure (mins)	7.65	10.89	20.26	36.09	2.05	5.47	7.48	18.99
Max Combined (mins)	7.69	13.93	48.73	111.45	4.46	10.12	15.89	50.14
Table 26 - Summary of Delays for Point Merge Capacity Analysis								

Capacity & Workload Performance

Scenario	Estimated Capacity as % of Current Busiest Day Demand	Max Runway Movement Rate/hr	Average Delay Range Per Flight (mins)	Max Average TMA Sector Workload
Point Merge Independent Mode	175% - 200%	78 - 90	6.20 – 17.35	20% – 25%
Point Merge Mixed Mode	150% - 175%	67 - 76	5.39 – 15.47	20% - 25%
VTBS Mixed Mode	150%	68	13.98	20% - 22%

Environment Performance: Track Miles

Average Distances

from 100nm to

Threshold (19L/R)

Point Merge/Point

from:	Enhanced Baseline	VTBS Enh Design	Merge Enh Design
NW	106.6nm	133.0nm (+26.4nm)	125.9nm (+19.3nm)
South	127.9nm	136.0nm (+8.1nm)	157.8nm (+29.9nm)
NE	104.2nm	121.5nm (+17.3nm)	103.3nm (-0.9nm)
SE	125.2nm	123.7nm (-1.5nm)	135.4nm (+10.2nm)
Average	116.0nm	128.55nm (+12.6nm)	130.6nm (+14.6nm)

Table 10 - STAR Path Length Comparison

Environment Performance: Track Miles

Average Distances from VTBS (19L/R) to		VTBS/VTBS Enh	Point Merge/Point
100nm	Enhanced Baseline		_
Toonim	Ennanced Baseline	Design	Merge Enh Design
NW	120.2nm	118.5nm (-1.7nm)	122.6nm (+2.4nm)
South	101.8nm	105.4nm (+3.6nm)	100.3nm (-1.5nm)
NE	124.1nm	117.5nm (-6.6nm)	128.8nm (+4.7nm)
SE	108.0nm	104.3nm (-3.7nm)	106.8nm (-1.2nm)
Average	113.5nm	111.4nm (-2.1nm)	114.6nm (+1.1nm)

Table 11 - SID Path Length Comparison

Average Track Mile Delta

= (Design Track Miles – Baseline Track Miles) x Actual # of Flights

	VTBS Enh Design	Point Merge Enh Design
Arrivals	18.4nm	8.2nm
Departures	-1.8nm	1.7nm

Table 13 - Average Track Mile Delta per Flight for Capacity Analysis

Environment Performance: Emission

	Open-STAR Design	Point Merge Design
Sequencing Method	Low altitude radar vectoring at 3000-7000 ft	High altitude planned sequencing leg at about 10000 ft
Design Overhead over Enhanced Baseline	Arrival +14.1 NM Departure -1.8 NM	Arrival +8.2 NM Departure +1.7 NM
Trajectory Predictability	Low – Aircraft is required to fly heading mode due to radar vectoring.	High – Pilot can utilize FMS capability, more suitable for CDO operation
Emission Level due to Sequencing	Higher	Lower

Environment Performance: Noise

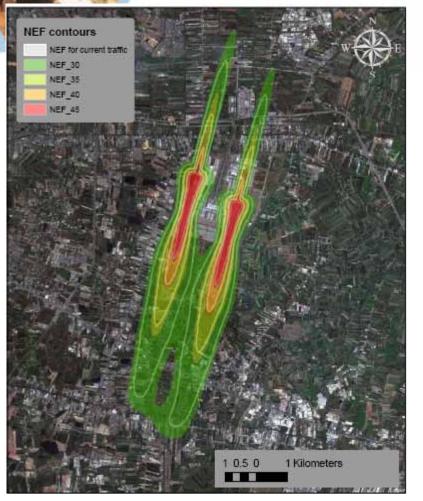


Figure 6 Comparisons of current and 175% traffic in mixed mode: PM

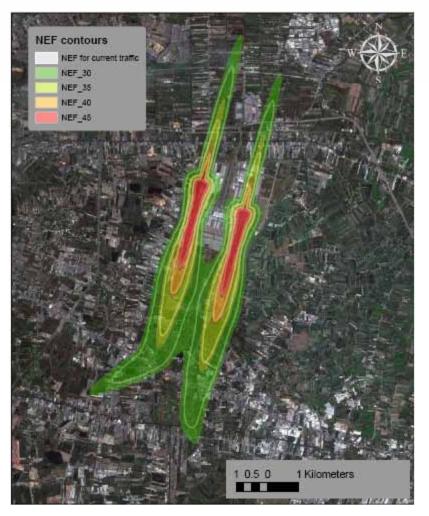


Figure 7 Comparisons of current and 175% traffic in mixed mode: VTBS

Performance Comparison Summary

Performance Comparison between Point-Merge and Revised Open-STAR

• Capacity:

- Point-merge can support higher traffic throughputs, both for arrival and departure
- Point-merge can support upto 175% of the current traffic as compared to 125% by Open-STAR.
- Delay: Point-merge has much better delay performance.
- Workload: Both designs have acceptable controller workload
- Environment:
 - Point-Merge has lower environmental both in terms of noise and carbon emission

ICAO/IATA Expert Recommendations

54

ICAO/IATA Recommendations

Ref.: AN 11/45.3- ATM40035

DEC 2 2010

Mr. Somchai Chanrod Director General Department of Civil Aviation 71 Soi Ngarmdu-Plee Tungmahamek Bangkok 10120 Thailand

Dear Mr. Chanrod,

I wish to present you with the outcome of the Go-Team visit to Thailand (25 to 27 August 2010), which was conducted by the International Civil Aviation Organization (ICAO)/International Air Transport Association (IATA) Global Performance Based Navigation Task Force (GPBNTF). The Go-Team performed an assessment on specific working areas and in agreement with the

I wish to present you with the outcome of the Go-Team visit to Thailand (25 to 27 August 2010), which was conducted by the International Civil Aviation Organization (ICAO)/International Air Transport Association (IATA) Global Performance Based Navigation Task Force (GPBNTF). The Go-Team performed an assessment on specific working areas and, in agreement with the representatives of Thailand's aviation community (Department of Civil Aviation (DCA), AEROTHAI, airlines, and general aviation representatives), developed a set of recommendations to enhance Thailand's national performance-based navigation (PBN) implementation plan.

I hope that the Go-Team visit was of assistance to Thailand, and I wish you success in the implementation of PBN in your airspace.

durs sincerely. Nancy J. Graham Ait Navigation Bureau

Enclosure: Report

cc: President, Aeronautical Radio of Thailand LTD

bcc: ICAORD, Bangkok

activities with the autoence

ICAO/IATA Recommendations

GLOBAL PERFORMANCE-BASED NAVIGATION (PBN) TASK FORCE GO-TEAM VISIT TO THAILAND

Go-Team participants

Inter. Org/Company	Contact Information	Working Area
ICAO	Erwin Lassooij 999 University Street Montreal, Quebec Canada H3C 5H7 Tel: +1 514 954 8219 x 6719 E-mail: elassooij@icao.int	Airspace concept
ICAO	Doug Marek 999 University Street Montreal, Quebec Canada H3C 5H7 Tel: +1 514 954 8219 x 6719 E-mail: dmarek@icao.int	Airspace concept
IATA	Carlos Cirilo 800 Place Victoria PO Box 113 Montreal, Quebec Canada H4Z 1M1 Tel.: +1 514 8740202 x 3620 Fax: +1 514 8740202 E-mail: <u>ciriloc@iata.org</u>	Operational Approval
IATA	Anthony Houston IATA Regional Office for Asia/Pacific, Triple One Somerset, 111 Somerset Road, #14-05, Singapore Tel.: +6564992339 E-mail:HOUSTONA@iata.org	Operational Approval
IFALPA	Capt. Korn Mansumitchai Tel.: +66 81 3446055 Fax: +66 2 5130030 E-mail:captainkorn@gmail.com	Operational Approval
QUOVADIS	Céline Baillard QUOVADIS, The PBN company by Airbus 17 avenue Didier Daurat BP 10051 Immeuble Socrate 31702 Blagnac Cedex, France www.guovadiswey.com Tel :+33 5 67 31 00 01 Fax: +33 5 67 31 00 05	Approach procedure design

International Air Transport Association

REPORT OF THE GLOBAL PERFORMANCE-BASED NAVIGATION (PBN) TASK FORCE GO-TEAM VISIT TO THAILAND

(25 to 27 August 2010)

ICAO/IATA Recommendations

2.2.2.6

2.2.2.7

Air Traffic Management

 All ATC SOPs should be designed with procedural separation in mind and allow the Air Traffic Controller to use their airspace as efficiently as possible. Letters of Agreements (LOA) should be reached with adjacent States to allow.

- The existing sectorization should be analysed to determine if the new airspace
- concept and traffic flows justifies Geographical or Functional ATC sectorization or a combination of both. Complete re-sectorization may be required. A cleansheet revision on TMA sectorization and TMA entry and exit points is

encouraged.

Bangkok TMA.

2.

З.

5.

1.

- 4. Integration of management units between different sectors within Bangkok
 - 4. Integration of management units between different sectors within Bangkok
 - TMA is highly encouraged. This is to ensure harmonization of ATC procedures and optimization of the use of limited airspace.

 T and optimized for the data of mining facility using current experienced TMA and ACC Air Traffic Controllers to

5

 CDO/CCO should be procedurally separated designs that are developed in collaboration with all stakeholders and usable at least 80% of the time. To the extent possible the design should allow the aircraft to descend from cruise and climb to cruise, minimizing ATC radar vectoring or Pilot intervention. Basic design examples, such as Point Merge and Tie-points, as shown in ICAO Doc 9931, Continuous Descent Operations Manual, are highly encouraged.

collaboration with all stakeholders and usable at least 80% of the time. To the extent possible the design should allow the aircraft to descend from cruise and climb to cruise, minimizing ATC radar vectoring or Pilot intervention. Basic design examples, such as Point Merge and Tie-points, as shown in ICAO Doc 9931, Continuous Descent Operations Manual, are highly encouraged.

• Expected Benefits of Point-Merge Design

- Reduce number of route crossings and conflicts in aircraft altitudes
- Enhancing throughput and capacity
- Reducing delay
- Increase predictability of flight path \rightarrow aircraft track dispersion is well-defined
- Reduce pilot workloads \rightarrow using FMS Direct-To instead of RADAR vectoring
- Reduce communication and frequency block
- CDO-embedded design
- Can support single-runway approach through a traffic coordinator
- Can support independent simultaneous parallel approach \rightarrow reduce arrival airborne delay

Potential Challenges of Point-Merge Implementation

- Require larger airspace \rightarrow However, Bangkok TMA is large enough.
- Reduce some flexibility
- New concept for ATC \rightarrow Take time and effort to educate and implement
 - Changes in mind-set and work-habit are required.
- Need airspace and sectorization adjustments \rightarrow may require infrastructure changes, especially on control positions and communication infrastructures

Airspace Sectorization: Baseline

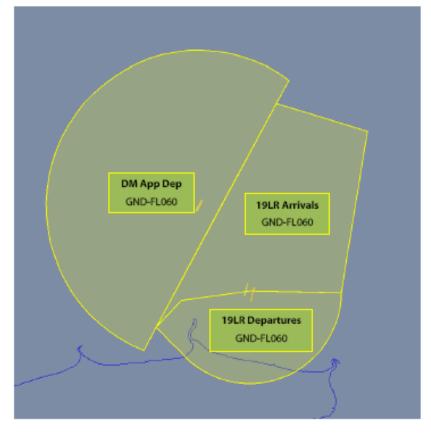


Figure 5 - Baseline Inner Sectors

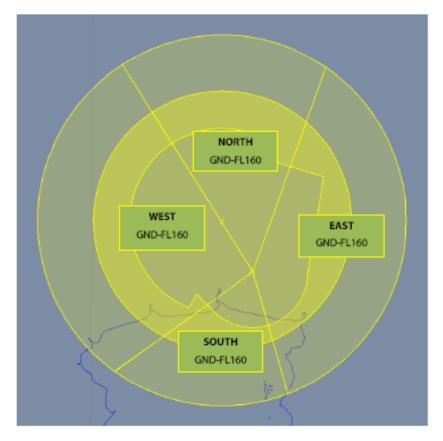
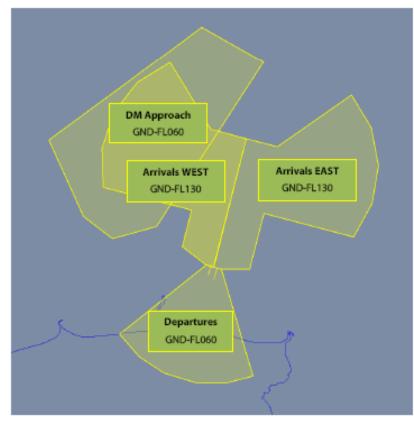



Figure 6 - Baseline Outer Sectors

Point Merge sector specification differs significantly from the Enhanced Baseline/VTBS design, as the design is based around the configuration of the new SIDs and STARs. Geographic sector structure for Point Merge is shown in the figures below.

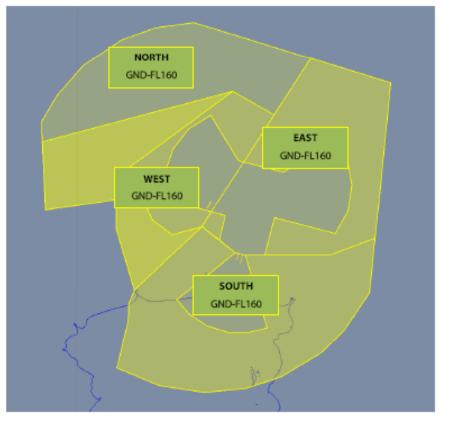


Figure 13 - Point Merge Inner Sectors

Figure 14 - Point Merge Outer Sector

Thank you for your attention.

124.305	1223300
112.70	CLASES!
3527 mil.+	
	-